2017年关于数据科学六大预言
来源: | 作者:k君 | 发布时间: 2016-11-17 | 714 次浏览 | 分享到:

n(转自:大数据文摘|bigdatadigest)

n n今天,数据正在以前所未有的方式创造和促进着企业成长和商业利润。在过去的十年间,先进的数据科技和高级分析工具的出现,已经使商界精英们从他们的数据中收获无数的利益,然而,对大多数人而言,他们只是触及了数据潜能的最表面。数据科学正在开天辟地的让企业成功地撬动这个巨大的潜能。n n麦肯锡2013年出版了一份特别的报告,预言全球商业界将会感觉到下一个十年数据科学专业人士的紧缺,尤其是善于从大量静态和动态(实时)数据中发现有价值的情报的数据分析师,缺口达150万。这个预言现已成真,人们更加关注向企业和高等教育机构推销数据管理的重要性,从而使得整个业界都能应对几年之前还不完全理解的人才短缺问题。n n数据科学领域的动荡要持续到2017年,伴随着更多的增长和更大的可能。n n数据科学的力量n n要理解为什么数据科学对商业为何如此关键,有几个前提需要理解:n在商业界需要它的时候,在需要它的领域,数据科学总能提供最精准的解决方案。n数据科学帮助做出更好的商业决策,并对这些决策的影响进行精确的研究。一份过去的哈佛商业评论研究指出,依赖数据进行决策的大生意一般比同行的利润高出6%。n当人的直觉和经验都失败时,数据科学对未来可以做出更加准确的预测。有了数据科学,商业不再靠猜。n有了高效、智能的设备和现代化的分析平台,客户追踪已经成为现实。实时获取客户信息有助于精确响应。n n鉴于以上各点,可以理解为什么在这个特定的时刻,数据科学正在经历全球化的革命。一直以来限制数据科学发挥作用的科学和技术问题都已逐步解决,2017年数据管理业界将在全球迎来一些主要的改变。明年,哪些地方可以见到数据科学的引领,请看下面这张精准计算的预言清单:n n2017 数据科学预言1:机器学习大行其道n n问答网站Quara对机器学习将如何影响数据科学业界的变革做了专题问答。为了回答这个问题,克劳迪娅•珀立弛(Claudia Perlich),Dstillery公司的首席科学家,纽约大学的客座教授,肯定地认为,由于数据科学与机器学习的密切关系,在将来的商业分析界,不懂机器学习是无法生存的。n n她觉得随着机器学习与数据科学家们关系越来越紧密,掌握机器学习的基础技能对数据科学领域的职业发展而言将成为一种必须。完整的解释发表在福布斯的博客上:http://www.forbes.com/sites/quora/2016/09/08/machine-learning-will-bring-some-big-changes-to-data-science-as-we-know-it/#16a5cc073b12n n2017年机器学习的火热仍会继续笼罩着数据科学家们。各种机构为了将拥有可靠机器学习技能的数据科学家招入麾下,扩充其数据科学部门,不惜付出额外的努力。n n